

High Performance RF Power LDMOSFET Technology for 2.1GHz Power Amplifier Applications

Shuming Xu, Ayman Shibib, Zhijian Xie, Hugo Safar, Joel Lott, Donald Farrel, Marco Mastrapasqua

Agere Systems, 10A-213 D, 1110 American Parkway NE, LVCC, Allentown, PA 18109 USA

Tel: +1 610 712 7847, Fax: +1 610 712 4881, email: shuming@agere.com

Abstract:

Silicon RF LDMOSFET technology is demonstrated with excellent RF performance. It achieves high power gain of 14.5db with a high power of 130W at 2.1GHz. Its high efficiency and high linearity makes it highly desired for base station applications. 2mil substrate enables the best-in-class of thermal stability. Low HCI effect, integrated ESD and gold metal ensure high long-term reliability.

Introduction:

In order to build base station equipment that delivers enhanced sensitivity, higher efficiency, lower distortion and increased output power, the RF power amplifier has been challenged intensively. The key component, RF power devices, has been gaining increased attention [1][2][3][5]. Attempts to make better devices have been made continually. Under the stress of cost, in trying to achieve high power levels, designers run the risk of reducing the linearity and efficiency in the amplifier design. It is strongly required to improve the power gain, efficiency, and linearity of the power devices. In the paper, high performance LDMOSFETs with high gain (~14.5db) at 2.1 GHz, high power level (130W, single ended), good linearity over a large dynamic power range, and high drain efficiency (~60%) is demonstrated. With the best-in-class thermal resistance, the powerful device provides very excellent thermal stability. In addition, by proper drain engineering, Hot-Carrier Injection (HCI) issues are suppressed to a negligible level.

Device Structure and Process Technology

The RF LDMOSFET is a Lateral diffused MOS device built on a heavily doped P+ substrate with the top source of the device shorted to the backside and it acts as the RF ground. The poly-silicon gate resistance, being a critical RF parameter, is minimized to give a very low sheet resistance for a poly-silicon gate length of 0.6um. A stepped LDD is optimized by trading-off between drain current capability, reverse feedback capacitance Crss and Hot-Carrier Injection. A dummy gate [4][5] is employed to get a lower Miller capacitance Crss and to make the electric field distribution in the drain side more uniform, ensuring a lower reverse feedback and high breakdown voltage.

Fig.1 shows the top view of device, which is fabricated with modified N-channel MOSFETs technology. Starting with heavily doped P+ substrate, lightly doped thick p-epi was grown to support the drain vertical breakdown voltage. Unique methods of source via have been developed to minimize the source resistance and inductance. Thin gate oxide is formed after the pad oxide is stripped. After the poly gate had been defined, p-body, LDD, and N+ source drain were formed. The dummy gate was defined following a dielectric layer deposition. Thinner source metal and thicker drain metal were made after the windows had been opened. Finally, the wafers were reduced to 2mil before assembling. As shown in Fig. 2, the devices have been input output matched internally.

DC and AC parameters:

To target the Vdd bias of 28V, the blocking voltage of the device was designed to be above 70V. Fig. 3 shows the pulsed DCIV characteristics of 6mm gate width device fabricated as the test structure. It can

be seen that at V_{dd} drain bias, the transconductance G_m is linear over a wide range of V_{gs} . For a given gate bias, the drain current is very flat, reflecting a high output resistance of the device. Measurements were also done on the most critical parameter: miller capacitance C_{rss} . Due to the proper design of dummy gate and drain engineering, C_{rss} is significantly reduced. As shown in Fig. 4, C_{rss} is reduced from 2pF to only 1pF at drain bias of 28V. Moreover, the shape of C_{rss} is improved drastically, namely it became much flatter over a wider range of V_{ds} for the dummy gate device compared to a no-dummy gate device.

RF Performance:

The maximum available gain vs frequency is shown in Fig. 5. A significant improvement is obtained with the dummy gated devices. Fig. 6 shows the plot of output power, power gain and input power at 2.1 GHz at different quiescent drain current. Clearly, power gain is affected by the Id_q . Trade-off between power gain and efficiency is made by the proper choice of Id_q , which also affects the gain flatness as a function of input power. As shown in Fig. 7, high gain of 14.5db has been achieved with output power compressed by 1db at 130W, which is obtained with drain efficiency as high as 60%. Linearity was also characterized at 2 tone continuous wave application. Fig. 8 shows the third order Inter-Modulation Distortion (IMD3) vs output power at various Id_q . At Id_q of 1400mA, IMD3 is lower than -45dbc up to a high output power of 70W. 2-carrier W-CDMA ACPR, IMD3, drain efficiency versus output power is shown in Fig. 9. With 28W output power and maximum IM3 of -35dbc, a drain efficiency of 28.5% is achieved.

Reliability:

Long term reliability of the devices is realized with gold based metalization and ESD protection. Furthermore, the issues of hot-carrier injection (HCI) are resolved by drain engineering. As a result, the HCI induced Id_q drift is suppressed. As shown in

Fig. 10, in our devices the Id drift is only 3~4% extrapolated to 20 years time for the worst case operating conditions. Even with a higher V_{ds} of 32V, HCI induced Id_q drift is less than 5% for 20 years.

Conclusion:

In summary, RF LDMOSFET is demonstrated with excellent RF performance. It achieves high power gain of 14.5db with a high power of 130W at 2.1GHz. Its high efficiency and high linearity makes it highly desired for base station applications. 2mil substrate enables the best-in-class of thermal stability. Low HCI effect, integrated ESD and gold metal ensure high long-term reliability.

Acknowledgement:

The authors would like to thank our team members Mr. Lance Steinberg, Dr. Tanya Nigam, Mr. Ed Lau for their supports. We also wish to thank Dr. Frank Baiocchi, Dr. Bailey Jones, Dr. Sean Lian and Dr. John Desko for fabricating the wafers. Deep thanks goes to Dr. Peter Gammel for his directions to the development.

References:

- [1] A. Wood, C. Dragon, and W. Burger, "High performance Si LDMOS technology for 2Ghz RF power amplifier applications", in IEDM Tech. Dig., pp. 87-90, 1996;
- [2] I. Yoshida, "2-Ghz Si power MOSFET Technology," IEDM Tech. Dig., 1997; [3] S. Xu and P. Foo, "RF LDMOS with extreme low parasitic feedback capacitance and high hot carrier immunity", in IEDM Tech. Dig. 1999, pp. 201-204;
- [4] S. Xu et al., "Dummy gated Radio Frequency VDMOSFETs with high breakdown voltage and low feedback capacitance", in IEEE ISPSD, pp. 385-388, 2000.
- [5] M. Shindo, M. Morikawa, T. Fujioka, K. Nagura, K. Kurotani, K. Odaira, T. Uchiyama, and I. Yoshida, "High power LDMOS for cellular base station applications", in ISPSD, pp. 107-110, 2001;

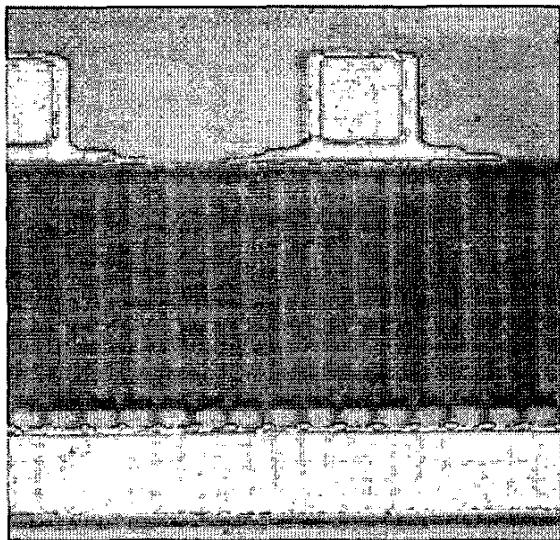


Fig. 1 Top view of finger cells of the device

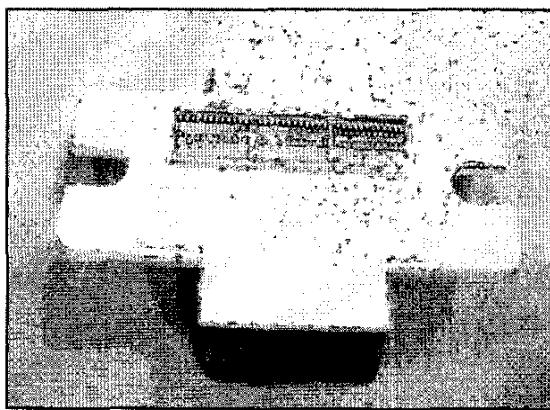


Fig. 2 Photograph of 125W transistor with internal matching

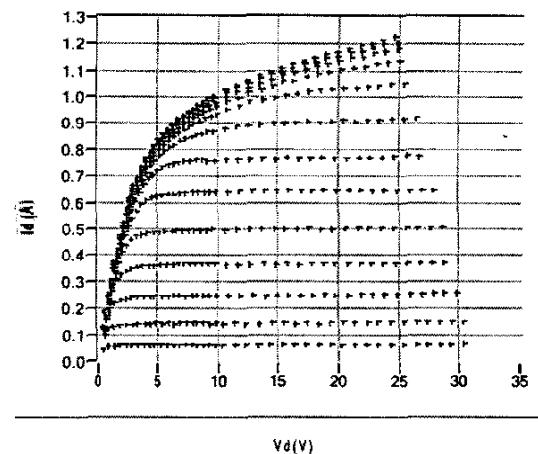


Fig. 3 Pulsed DCIV characteristics collected from test device

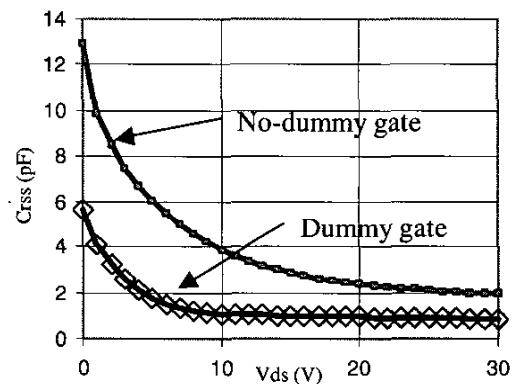


Fig. 4 C_{rss} vs drain bias V_{ds} for device with and without dummy gate

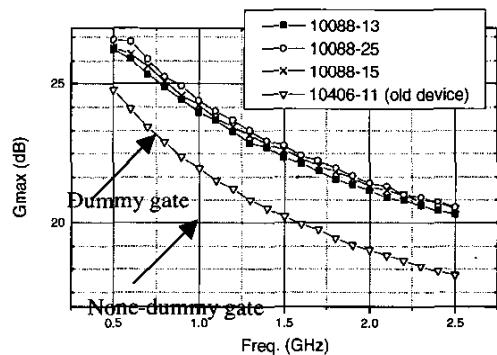


Fig. 5 Measured maximum available gain

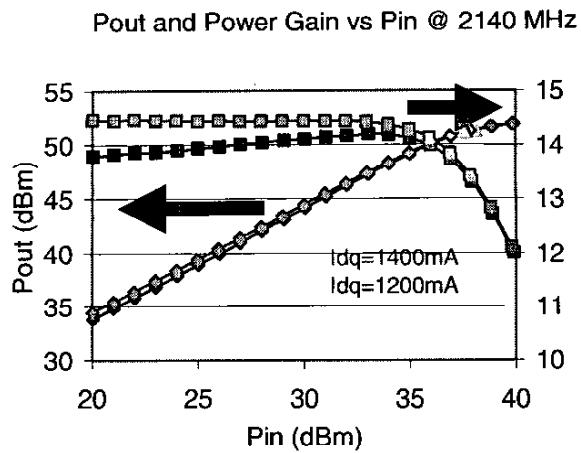


Fig. 6 Characteristics of output power, gain vs input power of 125W device

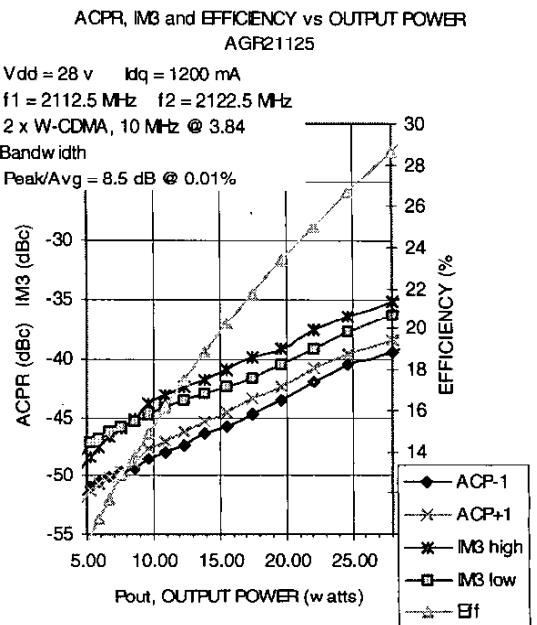


Fig. 9 2-Carrier W-CDMA ACPR, IM3, Drain Efficiency vs output power

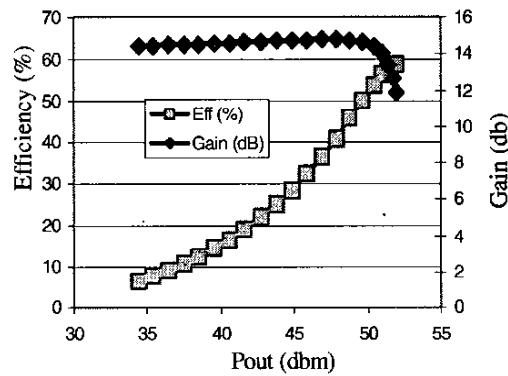


Fig. 7 Measured efficiency, gain vs output power at 2.14 Ghz of 125W transistor

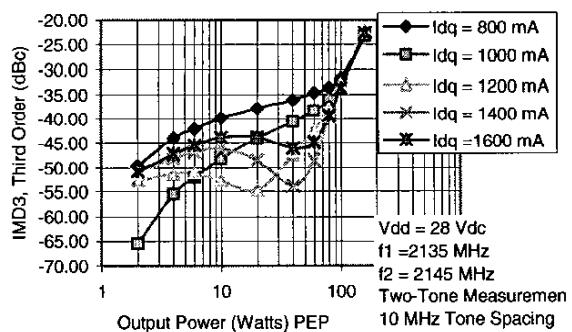


Fig. 8 Two-Tone intermodulation Distortion vs Output power as a function of drain bias

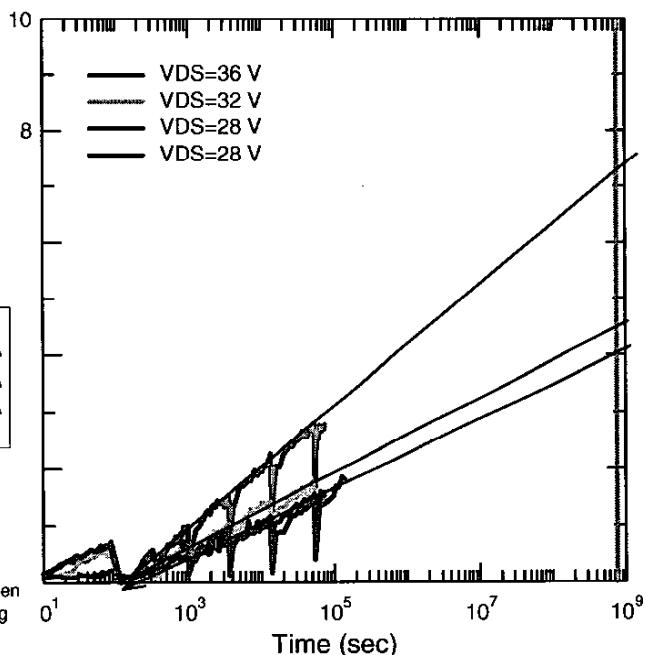


Fig. 10 Quiescent drain current degradation vs stress time at Vds=28, 32, and 36V operation conditions